The Pigments of 'Dragon's Blood' Resin. Part VIII.¹ Synthesis of (±)-Dracorubin and of (±)-Nordracorubin

By Evans O. P. Agbakwuru and W. Basil Whalley,* The School of Pharmacy, The University of London, London WC1N 1AX

(±)-Dracorubin (3.4-dihydro-5-methoxy-8-methyl-2,12-diphenyl-2H-dipyrano[2,3-a:2',3',4'-k/]xanthen-9-one) has been synthesised. Condensation of 7-benzyloxy-5-methoxy-6-methylflavan-4-ol with 7-hydroxy-5-methoxyflavan gave 7-benzyloxy-4-(7-hydroxy-5-methoxyflavan-8-yl)-5-methoxy-6-methylflavan, which was successively acetylated, debenzylated, and oxidised to 4-(7-acetoxy-5-methoxyflavan-8-yl)-5-methoxy-6-methyl-2phenyl-1-benzopyran-7-one. Cyclisation of this anhydro-base with sodium methylsulphinylmethanide gave (\pm) -dracorubin. (\pm) -Nordracorubin has been synthesised similarly.

OUR synthesis ¹ of (\pm) -draconol and of cognate derivatives defined the structure of dracorubin as (1; R = Me). We now report the total synthesis of (\pm) -dracorubin, and of (\pm) -nordracorubin² (1; R = H), by a route which simulates the probable biogenetic pathway to these pigments.

It has been shown 1,3-5 that flavylium salts may function as electrophiles: for example with NN-dimethylaniline they yield compounds of type (2),^{3,4} and with flavans dimeric derivatives 1,5 of type (3). Since it does not appear possible (cf. ref. 4) to use flavylium salts with a substituent at C-5 as effective electrophiles, we explored the possibility of using flavan-4-ols, in acidic

media, as an alternative source of the requisite carbocation.

Thus (\pm) -7-benzyloxy-5-methoxy-6-methylflavanone ¹ Part VII, A. A. Olaniyi, J. W. Powell, and W. B. Whalley, J.C.S. Perkin I, 1973, 179. ² G. Cardillo, L. Merlini, G. Nasini, and P. Salvadori, J. Chem.

Soc. (C), 1971, 3967.

(4; R = Me), prepared by standard procedures, was reduced to the corresponding flavan-4-ol (5; R = Me) with sodium borohydride. When a solution of the

carbocation (6: R = Me) obtained by dissolving this flavan-4-ol in acetic acid was added to a solution of 7hydroxy-5-methoxyflavan (7), in the same solvent, the dimeric flavan (8; $R^1 = Bz$, $R^2 = R^4 = Me$, $R^3 = H$) was rapidly formed. The position of the linkage between the two flavan units follows from general principles and also from the ultimate conversion of (8; $R^1 = PhCH_2$) $R^2 = R^4 = Me$, $R^3 = H$) into (±)-dracorubin. The acetate (8; $R^1 = PhCH_2$, $R^2 = R^4 = Me$, $R^3 = Ac$) was smoothly debenzylated (catalytically) to yield 4-(7acetoxy-5-methoxyflavan-8-yl)-7-hydroxy-5-methoxy-6methylflavan (8; $R^1 = H$, $R^2 = R^4 = Me$, $R^3 = Ac$), which was oxidised by dichlorodicyano-p-benzoquinone to the anhydro-base (9; R = Me). Cyclisation of this base, in dimethyl sulphoxide containing sodium hydride,

³ R. Wizinger and H. Luthiger, Helv. Chim. Acta, 1953, 36,

^{526.} ⁴ M. Blackburn, G. B. Sankey, A. Robertson, and W. B. Whalley, J. Chem. Soc., 1957, 1573. ⁵ L. Jurd, Tetrahedron, 1967, 23, 1057.

gave (\pm) -dracorubin, identical in i.r., u.v., n.m.r., and mass spectra and $R_{\rm F}$ values with (—)-dracorubin. (\pm) -Dracorubin exhibited the same characteristic crystalline form as (—)-dracorubin. This cyclisation is clearly mechanistically similar to the analogous base-catalysed cyclisation of 2-hydroxy-2'-methoxybenzophenones to xanthones.^{1,6}

In preliminary, model experiments we synthesised (\pm) -nordracorubin² (1; R = H) by a similar method. Thus the acid-catalysed condensation of the carbocation (6; R = H), derived from 7-benzyloxy-5-methoxy-flavan-4-ol (5; R = H), with 7-hydroxy-5-methoxy-flavan (7) furnished the dimeric flavan (8; R¹ = PhCH₂, R² = R³ = H, R⁴ = Me), which was converted by way of (8; R¹ = PhCH₂, R² = H, R³ = Ac, R⁴ = Me), (8; R¹ = R² = H, R³ = Ac, R⁴ = Me), and (9; R = H), into (\pm) -nordracorubin (1; R = H), identical in i.r., u.v., and mass spectra and $R_{\rm F}$ values with (-)-nordracorubin, and having the same crystalline form.

In agreement with the behaviour of the natural material, (\pm) -dracorubin and (\pm) -nordracorubin tenaciously retained varying amounts of solvent of crystallisation and did not afford consistent, satisfactory elemental analyses.

An examination of our (-)-dracorubin by t.l.c.² revealed small quantities of nordracorubin (*cf.* ref. 2).

During preliminary experiments designed to close the epoxy-bridge between C-5 and C-7' in biflavans of type (8) we prepared 7-benzyloxy-4-(7-hydroxy-5-methoxy-flavan-8-yl)-5-tosyloxyflavan (8; $R^1 = CH_2Ph$, $R^2 = R^3 = H$, $R^4 = Ts$) by condensation of 7-benzyloxy-5-tosyloxyflavan-4-ol with 7-hydroxy-5-methoxyflavan. However, neither this biflavan nor 7-benzyloxy-5-methoxy-4-(7-tosyloxy-5-methoxyflavan-8-yl)flavan (8; $R^1 = CH_2Ph$, $R^2 = H$, $R^3 = Ts$, $R^4 = Me$) could be cyclised under a variety of conditions.

EXPERIMENTAL

7-Benzyloxy-5-methoxy-6-methylflavan-4-ol.-Aqueous potassium hydroxide (60%; 20 ml) was added (under nitrogen) to a suspension of 4-benzyloxy-2-hydroxy-6-methoxy-5methylacetophenone (1 g) in methanol (16 ml) containing benzaldehyde (0.53 ml); 24 h later this viscous mixture was diluted with water (50 ml) and the solution acidified (pH 5) with 2n-hydrochloric acid. After 12 h, at 0 °C, the precipitate was collected and purified from methanol to yield 4-benzyloxy-2-hydroxy-6-methoxy-5-methylphenyl styryl ketone (0.9 g) in orange prisms, m.p. 84° (Found: C, 77.2; H, 6.3. C₂₄H₂₂O₄ requires C, 77.0; H, 6.0%). A solution of potassium hydroxide (60%; 20 ml) was added rapidly to a suspension of the ketone (1 g) in methanol (16 ml); after 18 h, at 20 °C, the red mixture was diluted with water and the product collected. Purification from methanol gave 7benzyloxy-5-methoxy-6-methylflavanone (0.94 g) in needles, m.p. 140° (Found: C, 76.8; H, 5.9%; M⁺, 374. C₂₄H₂₂O₄ requires C, 77.0; H, 6.0%; M, 374), 7 2.60 (10 H, s, aromatic), 3.63 (1 H, s, aromatic), 4.6 (1 H, dd, benzylic CH, $J_{\text{AX}} + J_{\text{BX}} = 16$ Hz), 4.95 (2 H, s, benzylic CH₂), 6.18 (3 H, s, OMe), 7.08 (2 H, m, CO·CH₂), and 7.88 (3 H, s, ArMe).

A solution of this flavanone (0.5 g) in ethanol (100 ml) was maintained at 30 °C while sodium borohydride (0.25 g) was added in portions during 5 min. After 1.5 h, an excess of acetic acid was added and the clear solution was evaporated *in vacuo*. Extraction of the residue with peroxide-free ether gave 7-benzyloxy-5-methoxy-6-methylflavan-4-ol (0.46 g), in needles, m.p. 94° (from peroxide-free ether) (Found: C, 76.6; H, 6.5%; M^+ , 376. C₂₄H₂₄O₄ requires C, 76.6; H, 6.4%; M, 376).

 (\pm) -Dracorubin. - 7-Benzyloxy-5-methoxy-6-methylflavan-4-ol (0.2 g) and 7-hydroxy-5-methoxyflavan (0.14 g) were dissolved in acetic acid (50 ml). The solution was maintained at 50 °C while water (850 ml) (preheated to 50 °C) was added during 1-2 min. The resultant suspension was stirred for 10 min. After 15 h at 20 °C sodium chloride (7 g) was added to coagulate the micro-crystalline suspension, which resisted recrystallisation, but was chromatographically pure. 7-Benzyloxy-4-(7-hydroxy-5-methoxyflavan-8-yl)-5-methoxy-6-methylflavan (0.34 g) had m.p. 115-125° (decomp.) (Found: C, 77.2; H, 6.3%; M^+ , 614. $C_{40}H_{38}O_6, 0.5H_2O$ requires C, 77.0; H, 6.3%. $C_{40}H_{38}O_6$ requires *M*, 614), ν_{max} (CCl₄) 3 460 cm⁻¹ (OH); λ_{max} 210 (log ε 4.91), 235sh (4.31), and 280 nm (3.66), τ 2.63 (15 H, s, aromatic), 3.60 (1 H, s, aromatic), 4.0 (1 H, s, aromatic), 4.54 (1 H, s, OH, exchanged with D_2O), 4.96 (5 H, m, benzylic CH₂ and three CH), 6.20-6.52 (6 H, m, 2 OMe), and 7.3-8.4 (9 H, m, 3 CH₂ and ArMe).

Acetylation (pyridine-acetic anhydride) gave (quantitatively) 4-(7-acetoxy-5-methoxyflavan-8-yl)-7-benzyloxy-5-methoxy-6-methylflavan in micro-needles, m.p. 75—78° (from ethanol) (Found: C, 76.8; H, 6.3%; M^+ , 656. C₄₂H₄₀O₇ requires C, 76.8; H, 6.1%; M, 656).

Hydrogenolysis of this acetate (0.9 g) dissolved in acetic acid (45 ml) containing 1 drop of hydrochloric acid (10N) and palladium-charcoal (0.45 g, 20%) occurred rapidly to yield 4-(7-acetoxy-5-methoxyflavan-8-yl)-7-hydroxy-5-methoxy-6-methylflavan in micro-prisms (0.7 g), m.p. 120° (decomp.) (Found: C, 74.1; H, 6.2%; M^+ , 566. C₃₅H₃₄O₇ requires C, 74.2; H, 6.1%; M, 566).

A solution of this phenol (0.2 g) in benzene (80 ml) containing 2,3-dichloro-5,6-dicyano-p-benzoquinone (0.16 g) was refluxed for 1 h. The cooled solution was separated from deposited solid and diluted with benzene (100 ml). After washing with 1% sodium hydroxide solution, followed by water, solvent was removed to yield 4-(7-acetoxy-5methoxyflavan-8-yl)-5-methoxy-6-methyl-2-phenyl-1-benzopyran-7-one (15 mg) in bright red needles, m.p. 210° (decomp.) [from acetone-water (1:1)] (Found: C, 72.7; H, 5.5%; M^+ , 562. $C_{35}H_{30}O_7, H_2O$ requires C, 72.4; H, 5.6%. $C_{35}H_{30}O_7$ requires M, 562), v_{max} 1 755 (OAc) and 1 644 cm⁻¹ (C:O); λ_{max} 277 (log ε), 286 (4.34), 316 (3.95), 330 (4.95), 297 (100 ε), 286 (4.34), 316 (3.95), 330 (4.95), 3 (3.95), 385 (4.04), and 490 nm (4.16); τ 2.25 (2 H, m, aro-)matic), 2.53 (3 H, m, aromatic), 2.83 (5 H, s, aromatic), 3.2 (1 H, d, J 10 Hz, C-3 olefinic), 3.53 (1 H, s, aromatic), 3.65 (1 H, s, aromatic), 5.0 (1 H, m, benzylic CH), 6.12 (3 H, s, OMe), 7.73 (3 H, s, OMe), 7.1 (2 H, m, CH₂), and 7.9 (8 H, m, ArMe, OAc, and CH_2).

A solution of sodium methylsulphinylmethanide (0.5 ml, 2 mol equiv.) [prepared from sodium hydride (0.43 g) and dimethyl sulphoxide (50 ml)] was added to the finely powdered anhydro-base (50 mg) under nitrogen. After 40 min at $60-65^{\circ}$ (with slow stirring) the cooled mixture was diluted with water (8 ml) and the red, semi-crystalline solid

⁶ D. H. R. Barton and A. I. Scott, J. Chem. Soc., 1958, 1767.

was collected. Purification by t.l.c. on alumina in chloroform-methanol (98:2), followed by elution with chloroform, gave (\pm)-dracorubin (10 mg) in dark red plates with a green reflex, m.p. 320° (decomp.) [from benzene-methanol (3:1)] (Found: M^+ , 488. $C_{32}H_{24}O_5$ requires M, 488), v_{max} . 1 660 cm⁻¹ (C·O), τ 1.88 (1 H, s, ArH), 2.37 (5 H, s, ArH), 2.66 (5 H, m, ArH), 3.34 (1 H, s, ArH), 3.63 (1 H, s, ArH), 5.0 (1 H, m, ArCH·O), 6.26 (3 H, s, OMe), 7.45 (2 H, m, CH₂), 8.10 (2 H, m, CH₂), and 8.18 (3 H, s, ArMe).

(\pm)-Nordracorubin.—Reduction of 7-benzyloxy-5-methoxyflavanone (0.5 g) in ethanol (100 ml) at 30 °C with sodium borohydride during 1 h gave 7-benzyloxy-5-methoxyflavan-4-ol in small needles, m.p. 109° (0.5 g) (from peroxidefree ether) (Found: C, 76.1; H, 6.1. $C_{23}H_{22}O_4$ requires C, 76.2; H, 6.1%). 7-Benzyloxy-5-methoxyflavan-4-ol (1 g) and 7-hydroxy-5-methoxyflavan (0.7 g) were dissolved in acetic acid (50 ml) at 50 °C, and water (850 ml) at 50 °C was added. After 15 h at 20 °C, 7-benzyloxy-4-(7-hydroxy-5methoxyflavan-8-yl)-5-methoxyflavan (1.7 g) was obtained as an amorphous solid, m.p. 100—110° (decomp.), which was chromatographically homogeneous but could not be induced to crystallise (Found: C, 76.9; H, 6.2%; M⁺, 600. $C_{29}H_{36}O_6$ requires M, 600).

Acetylation of this dimer (pyridine-acetic anhydride) gave (quantitatively) 4-(7-acetoxy-5-methoxyflavan-8-yl)-7benzyloxy-5-methoxyflavan in needles, m.p. 118° (from ethanol) (Found: C, 76.5; H, 6.1%; M^+ , 642. $C_{41}H_{38}O_7$ requires C, 76.6; H, 6.0%; M, 642).

Debenzylation of this acetate (1 g) in acetic acid (50 ml) containing 10N-hydrochloric acid (1 drop) and palladiumcharcoal (20%; 0.5 g), in hydrogen occurred during 1 h, to yield (quantitatively) 4-(7-acetoxy-5-methoxyflavan-8-yl)-7hydroxy-5-methoxyflavan, in micro-needles, m.p. 135° (from aqueous acetic acid) (Found: C, 73.6; H, 6.0%; M^+ , 552. C₃₄H₃₂O₇ requires C, 73.9; H, 5.8%; M, 552).

Oxidation of this phenol (0.2 g) with 2,3-dichloro-5,6-dicyano-*p*-benzoquinone (0.17 g) in boiling benzene (80 ml) during 2 h gave 4-(7-*acetoxy*-5-*methoxyflavan*-8-*yl*)-5-*methoxy*-2-*phenyl*-1-*benzopyran*-7-*one* (0.06 g) in red prisms, m.p. 197° (decomp.) (from aqueous acetone) (Found: C, 73.4; H, 5.4%; M^+ , 548. $C_{34}H_{28}O_7$,0.5H₂O requires C, 73.3; H, 5.2%. $C_{34}H_{28}O_7$ requires M, 548), v_{max} (KBr) 1 760 (OAc) and 1 640 cm⁻¹ (C·O) λ_{max} 279 (log ε 4.29), 288 (4.29), 313 (3.99), 328sh (3.93), 390 (4.04), and 480 nm (4.08), τ 2.28 (2 H, m, ArH), 2.55 (3 H, m, ArH), 2.82 (5 H, s, ArH), 3.3 (1 H, s, ArH), 3.72 (2 H, m, ArH), 3.97 (1 H, s, ArH), 4.98 (1 H, m, ArCH-O), 6.15 (3 H, s, OMe), 6.48 (3 H, s, OAc), 7.2 (2 H, m, CH₂), 7.85 (2 H, m, CH₂), and 7.97 (3 H, s, ArMe).

Cyclisation of this anhydro-base (0.1 g) with sodium

methylsulphinylmethanide, as for the dracorubin analogue, gave (\pm) -nordracorubin (20 mg) in red plates, m.p. 285° (decomp.) (Found: M^+ , 474. $C_{31}H_{22}O_5$ requires M, 474).

5-Acetoxy-4-(7-acetoxy-5-methoxyflavan-8-yl)-7-benzyloxyflavan. --Reduction of 7-benzyloxy-5-hydroxyflavanone (0.5 g) in ethanol (50 ml) during 1 h, gave after isolation with peroxide-free ether, 7-benzyloxy-5-hydroxyflavan-4-ol (0.5 g) in pale yellow prisms, m.p. 204° (decomp.) (from peroxide-free ether) (Found: C, 75.9; H, 5.8. $C_{22}H_{20}O_4$ requires C, 75.8; H, 5.8%).

7-Benzyloxy-5-hydroxyflavan-4-ol (0.2 g) and 7-hydroxy-5-methoxyflavan (0.15 g) were dissolved in acetic acid (50 ml) at 50 °C. Water (800 ml; at 50 °C) was added during several min: 24 h later the precipitate was collected and purified from aqueous acetic acid to yield 7-benzyloxy-5hydroxy-4-(7-hydroxy-5-methoxyflavan-8-yl)flavan (0.35 g) in micro-prisms, m.p. 90° (Found: C, 76.6; H, 5.7. $C_{38}H_{34}O_{6}$,-0.5H₂O requires C, 76.6; H, 5.9%). The diacetate formed prisms, m.p. 118° [from methanol-ether (20:1)] (Found: C, 75.4; H, 5.8. $C_{42}H_{38}O_8$ requires C, 75.2; H, 5.7%).

7-Benzyloxy-4-(7-hydroxy-5-methoxyflavan-8-yl)-5-tosyloxyflavan.—Prepared quantitatively from 7-benzyloxy-5-hydroxyflavanone, 7-benzyloxy-5-tosyloxyflavanone separated from methanol in stout yellow needles, m.p. 126° (Found: C, 69.5; H, 4.7; S, 6.4. $C_{29}H_{24}O_6S$ requires C, 69.6; H, 4.8; S, 6.4%).

Reduction of this flavanone with sodium borohydride furnished the corresponding flavan-4-ol (0.2 g), which was too unstable to be purified, and was condensed immediately with 7-hydroxy-5-methoxyflavan (0.1 g) in acetic acid (50 ml) and water (680 ml) to yield 7-benzyloxy-4-(7-hydroxy-5-methoxyflavan-8-yl)-5-tosyloxyflavan (0.3 g) as an unstable solid, m.p. 214° (decomp.).

7-Benzyloxy-5-methoxy-4-(7-tosyloxy-5'-methoxyflavan-8-yl)flavan.—Prepared from a solution of 7-benzyloxy-4-(7hydroxy-5-methoxyflavan-8-yl)-5-methoxyflavan (0.5 g) in sodium hydroxide solution (10%; 4 ml) by addition of toluene-*p*-sulphonyl chloride (1.1 g) in acetone (5 ml), the tosylate formed needles (0.4 g), m.p. 125° (from acetone) (Found: C, 73.5; H, 5.4; S, 4.2%; M^+ , 754. $C_{46}H_{42}O_9S$ requires C, 73.2; H, 5.6; S, 4.3%; M, 754).

One of us (E. O. P. A.) thanks the British Council for a Scholarship. We are grateful to Dr. J. W. Powell for discussion, and to Professor L. Merlini (Milan) for exchange of information and a specimen of (-)-nordracorubin. We also thank Dr. J. W. Briggs, King's College, London, for the 100 MHz, Fourier transform spectra of (\pm) - and (-)-dracorubin.

[5/2272 Received, 19th November, 1975]